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The results of numerical investigations of the laws governing the spreading of a two-dimensional diffusion
flame over thermally thin layers of a cellulose material using the algorithm of calculation of stationary veloc-
ity of flame propagation, which is based on the principle of minimum entropy production, are presented. The
obtained dependences of the velocity of flame propagation on thermophysical parameters (thickness of the
fuel, oxygen concentration and pressure of the ambient, velocity of the blowing flow) agree quantitatively with
the well-known experimental data.

In [1] an algorithm for calculating the stationary velocity of flame propagation was suggested which was
based on the principle of minimum entropy production. Further calculations of the velocity of propagation of a one-di-
mensional laminar flame through a mixed gas mixture [2, 3] have shown that the use of this algorithm allows one to
adequately describe the well-known physical laws (there is a certain quantitative deviation from a physically exact so-
lution based on the integral balance of mass in the course of chemical conversion in a combustion wave, which is rea-
sonably expected considering the substantially nonlinear "process characteristics–temperature" dependence which brings
this solution beyond the framework of the classical linear nonequilibrium thermodynamics). The thermodynamic analy-
sis of this classical problem on the propagation of flame was carried out in a number of works in which the parame-
ters of entropy production in a flame [4] are investigated, and the principle of minimum production of entropy is used
to obtain an analytical solution [5] and, which is closest to the subject of the present work, the extreme properties of
entropy production are considered as a functional with a view to formulate the variational principle for determining the
velocity of flame propagation [6].

It should be noted that solution of the problem of one-dimensional propagation of a flame can be obtained
within the framework of the mathematical statement which is based on phenomenological conservation laws of contin-
uum mechanics (the first law of thermodynamics) and which does not call for the use of additional relations following
from the second law of thermodynamics, one of the possible formulations of which is the principle of minimum en-
tropy production. Various algorithms for calculating a stationary velocity of flame propagation over a mixture of
stirred gases are considered and verified (e.g., [7]), the results of the application of which correspond to experimental
data with an accuracy comparable with the accuracy of measurements, and their further development is directed mainly
at refinement of the kinetic schemes of combustion reaction. On the other hand, an analysis of the problem of two-di-
mensional wave propagation over the surface of a fuel [8, 9] has shown that on its formulation in steady-state equa-
tions written in a coordinate system moving with the flame front one fails to obtain a unique solution with respect to
the sought-for value of the stationary velocity of flame propagation. Here, unlike the one-dimensional flame propaga-
tion, transition to a stationary formulation of the problem by the coordinate transformation of the form x′ = x + vndt
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does not lead to a single-valued formulation, since in expansion of the true vector of the flame propagation velocity
vn in a Cartesian coordinate system (Fig. 1) there are two significant components: the linear rate of thermal decompo-
sition of material vs and the velocity of flame propagation along its surface uf. Their determination requires the appli-
cation of a relation that represents the condition of mass conservation in the course of the chemical reaction of thermal
decomposition of material. The use of a single equation for determining two values leads to a situation where, in the
general case, one fails to obtain a closed mathematical statement of the problem of calculating a stationary flame
propagation velocity. In [8] it is shown that the earlier approaches were based on a priori relations that redefine a con-
jugate mathematical model of the problem. The following additional conditions were suggested that make it possible
to close the problem and calculate the flame propagation velocity: in classical work [10] a fixed value of temperature
is prescribed on the surface of a fuel, in [11] a fixed value of the coordinate of the burning out of a fuel xb (Fig. 2),
and in [12] a certain fixed value of temperature is prescribed at a certain point on the fuel surface. As is shown in
the analysis given below, the above-mentioned conditions are a priori ones and they do not correspond to the state-
ment of a conjugate problem, since the values of the parameters considered are determined as a result of solving the
conservation equations.

The aim of the present work is the parametric estimation of the algorithm for calculating a stationary velocity
of flame propagation which would be based on the principle of minimum entropy production using the results of in-
vestigation into the laws governing the propagation of a diffusion flame over the surface of a fuel. The basic criterion

Fig. 1. Configuration of flame propagation.

Fig. 2. Physical model of the problem.
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for the comparison of the obtained results with experimental data is the value of the stationary velocity of flame
propagation; it is a microscopic value which reflects the resulting effect of the entire process of combustion as an en-
semble of various physicochemical phenomena.

Formulation of the Problem. In the formulation of a model of steady propagation of a two-dimensional dif-
fusion flame over the surface of a fuel the following basic assumptions were made: in the fuel there is a single mac-
roscopic reaction of thermal decomposition of material; in the gas phase between the gaseous products of pyrolysis and
an oxidizing reagent of the surrounding medium there occurs one gross reaction of combustion; the thermophysical
characteristics of all the components of the gas mixture are assumed to be identical; the gas motion is laminar; radia-
tive heat transfer is not considered.

In a coordinate system moving with the flame front (Fig. 2) the steady-state equations of transfer in a gas
phase, which describe laminar motion of a viscous chemically reacting gas with account for natural convection, have
the form [9]
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ρ = p ⁄ RT . (7)

In the fuel, the equations of the conservation of energy and concentration of the initial reagent of the reaction of py-
rolysis are considered:
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The rates of the reactions of combustion in the gas phase and of the reaction of thermal decomposition of the fuel are
defined by the Arrhenius law:

W = kYoYfu exp (− E ⁄ R0T) , (10)
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Ws = ks exp (− Es
 ⁄ R0Ts) . (11)

According to the scheme of the computational domain presented in Fig. 2, the boundary conditions have the form

x = 0 :   u = uf + ua ,   v = 0 ,   T = Ta ,   Yfu = 0 ,   Yo = Yo,a , (12)

y = 0   (0 < x < xb) :   u = uf ,   ρv = ρsvs , (13)

T = Ts , (14)
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Algorithm of Calculation of the Flame Propagation Velocity. The problem considered is represented by
Eqs. (1)–(9) for nine sought-after variables: u, v, p, T, Yo, Yfu, ρ, Ts, and Ys. In addition to them, the conservation
equations and boundary conditions contain additional variables: the linear rate of pyrolysis of a fuel, vs, the shape of
the boundary of the fuel burning out δ(x), and, as a parameter of coordinate system transformation, the velocity of sta-
tionary propagation of flame uf. These quantities are characteristic parameters of the problem and, by definition, must
be expressed in terms of the remaining parameters obtained as a result of solving the boundary-value problem, Eqs.
(1)–(9), with corresponding boundary conditions. In order to obtain the needed relations we will consider the process
of thermal decomposition of a fuel in the following model [9]: in the fuel there occurs a volume reaction of pyrolysis
which leads to gasification of the solid at the burning-out boundary δ(x). Correspondingly, Ys = 1 in the solid (−δ(x)
< y < 0) and Ys = 0 after the gasification of the fuel (−L0 < y < −δ(x)). Integration of Eq. (9) over the coordinate y
yields the equation
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 Wsdy , (22)
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the right-hand side of which represents the well-known equation for the linear rate of combustion of a solid fuel [13]:

vs (x) =   ∫ 
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0

 Wsdy . (23)

Integration of Eq. (22) over the coordinate x yields an expression for the shape of the fuel surface δ(x):
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Thus, integration of Eq. (9), which accounts for the mass balance in the solid in the course of chemical reac-
tion of thermal decomposition, leads to the needed relations (23) and (24) for determining the linear rate of pyrolysis
vs and the boundary of the burning-out of the fuel δ(x), respectively. In actual fact, the transformation of differential
equation (9) into two integral ones allows one to replace the two-dimensional variable Ys(x, y) by two one-dimensional
— vs(x) and δ(x). It is evident that the velocity of flame propagation uf remains the unknown parameter, and for this
velocity to be determined, it is necessary to enlist some additional relations the derivation of which in the present
work is based on application of the principle of minimum entropy production. In accordance with the adopted model
of heat transfer in a fuel two irreversible processes participate in entropy production: heat conduction and chemical re-
action. We will represent the total entropy production in the given thermodynamic system as [14]
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The thermodynamic fluxes and generalizing forces for the heat conduction process [14] are
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The thermodynamic flux corresponding to the chemical reaction is proportional to its rate:

JW = ρsWs . (28)

For the generalized force corresponding to the chemical reaction the following relation [9] was obtained:
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where Ts
∗ is the maximum temperature in the fuel adopted here as a certain characteristic temperature closest to an

equilibrium one with respect to the considered reaction of pyrolysis.
The algorithm of determining the velocity of flame propagation is as follows. The solution of the problem,

Eqs. (1)–(8), is found at different values of uf. Using the temperature distributions found, we calculate the values of
integral (25) in which the thermodynamic fluxes and generalized forces are determined from Eqs. (26)–(29). Among
the values of entropy production P(uf) obtained, the minimum value is determined, which is assumed to correspond to
the steady state of the considered thermodynamic system, and the value uf corresponding to it is assumed to corre-
spond to the sought-for value of the stationary velocity of flame propagation.
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Results of Calculations. The procedure of numerical solution of the conjugate problem of heat and mass
transfer in a reacting heterogeneous system "gas–solid body" is based on combined application of the control volume
method [15] for a gas phase and finite element method [16] for a solid fuel. This approach [9] allows one to use the
advantages of both methods consisting, on the one hand, in the efficient algorithm of flow field calculation and, on
the other, in the higher accuracy of calculation of the integral characteristics in a fuel and approximation of the vari-
able boundary of burning-out of the fuel which is formed in accordance with the obtained distribution of the rate of
thermal decomposition of material, according to Eq. (24). For a more accurate approximation of the nonlinear source
term which describes heat release in the course of the combustion reaction, as well as of the ambient boundary con-
ditions, the computational domain in the gas phase was composed of two subdomains: the inner region which includes
the flame zone, with a constant step of a difference grid (for the base variant 60 × 20 nodes along the coordinates x
and y, respectively) and the outer region with the grid step increasing toward the boundaries of the computational do-
main (additionally 15 and 10 nodes along the coordinates x and y, respectively). On increase in the concentration of
oxygen in the ambient entailing a growth of the physical dimensions of the flame, the number of computational nodes
in the inner subdomain increased up to 120 × 40, with preservation of the characteristic dimension of the grid step in
the flame zone.

The calculations were made for a flame propagating over both surfaces of a thermally thin (entirely burning)
layer of cellulose material (paper) down a vertical surface opposite to the blowing flow caused by natural and forced
convection. For the given conditions an appreciable number of consistent experimental data on the flame propagation
velocity were found that were obtained by various authors. As the basic conditions we accepted "normal" outer condi-
tions (atmospheric pressure, oxygen concentration in air, absence of forced convection). The values of the thermophysi-
cal and kinetic parameters used are presented in Table 1.

The dependences of the flame propagation velocity on different initial conditions are presented in Fig. 3. On
the whole, one can note a satisfactory quantitative agreement between the calculated and experimental data. The results
of investigation of the dependence of the flame propagation velocity on the material layer thickness (Fig. 3a) were
used to calibrate the kinetic parameters of the combustion reaction rate in a gas phase by the value of the pre-expo-
nential factor, since a great quantity of experimental values are available for this case. The good agreement between
the calculated and experimental results on the influence of oxygen concentration in the ambient (Fig. 3b) is due to the
fact that here the initial data [17] were used which, in turn, had been verified by the results of our own experiment
[18]. The results of calculations (Fig. 3c) demonstrate a qualitatively correct description of the dependence of the
flame propagation velocity on ambient pressure; however, the quantitative correspondence with measurements was ob-
tained only for atmospheric conditions. This is due to the fact that the pressure exerts a substantial effect on the ki-
netics of the reactions taking place in the flame, which needs a separate analysis.

Figure 4 presents the dependences of the distributions of entropy production on the flame propagation velocity
at different velocities of the blowing flow. As the latter velocity increases, the point of minimum on the corresponding
curve becomes less distinct and at a certain value of it (ua > 0.7 m/sec) the local minimum disappears, and the distri-
bution of entropy production acquires a monotonic character. The general form of the dependence of the flame propa-
gation velocity on the blowing flow velocity (Fig. 5) shows that the latter has a critical value at which there exists the

TABLE 1. Initial Data for the Base Variant [17]

Parameters Gas phase Material Parameters Gas phase

C 1005.6 1257 vF 1.0

λ 0.0254 0.1257 v0 1.185

ρ 1.0 650 Le 1

Q 1.68⋅107 –7.54⋅105 Pr 0.7

k 109 1010 p 105

E 62 850 125 700 Yo,a 0.21

Lo — 0.00013 θ π ⁄ 2
Ta 300 300 ua 0
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thermodynamic system considered, which corresponds to the minimum entropy production. At higher values of ua the
minimum value of entropy production corresponds to the point of a global minimum uf = 0, i.e., to the absence of
flame propagation. This feature reflects the fundamental difference between a stationary propagation of flame and its
propagation at a constant velocity. Experimental investigations [19] have demonstrated the existence of two regimes of
flame propagation opposite to the blowing flow. Until the critical blowing velocity is attained there is a stable regime;
thereafter the flame propagation becomes locally unstable — the propagation velocity is determined as a time-averaged
value. The unstable regime is a substantially nonstationary process, and its characteristics cannot be calculated on the
basis of the proposed algorithm, since at its basis is the determination of the steady-state thermodynamic state of the

Fig. 3. Flame propagation velocity vs. the process parameters: a) fuel layer
thickness, experiment: 1) [18]; 2) [19]; 3) [20]; 4) [21]; 5) [22]; 6) [23]; 7)
[24]; 8) [25]; calculation: 9) k = 8⋅108 1/sec, 10) k = 1⋅109 1/sec; b) oxygen
concentration in the ambient: 1) experiment [18]; 2) calculation; c) ambient
pressure: 1) experiment [23]; 2) calculation. uf, mm/sec; L0, mm; p, Pa.

Fig. 4. Distribution of entropy production vs. flame propagation velocity at dif-
ferent blowing flow velocities: 1) ua = 0; 2) 0.15; 3) 0.3; 4) 0.7; 5) 1.0 m/sec;
6) points of a minimum. uf, mm/sec; P, W/(m⋅K).
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system. In considering a stable regime of flame propagation the results of calculation of its velocity (Fig. 5) corre-
spond well to experimental data.

Thus, the results obtained in the present work confirm the fundamental suitability of the principle of minimum
entropy production for describing the base laws governing flame propagation (at least, for the above-investigated con-
ditions). It should be emphasized that the problem considered can be solved in the statement which employs the un-
steady-state equation of transfer [26]. In such a case, no uncertainties arise which are typical of the stationary
formulation of the problem considered here; however, it is also evident that solution of a system of nonlinear un-
steady-state equations involves a good deal of expenditures of computational resources. In conclusion we note that the
necessity of applying relations based on the concepts of the thermodynamics of irreversible processes (which, despite
their dynamic development [27], are still far from being generally recognized) is due to the reduction of the problem,s
dimensionality in the transition to steady-state equations.

NOTATION

C, heat capacity, J/(kg⋅K); E, activation energy, J/mole; g, free fall acceleration, m/sec2; k, pre-exponential
factor, 1/sec; L0, initial thickness of a layer of a fuel, m; Lx, length of the computational domain along the coordinate
x, m; Ly, length of the computational domain along the coordinate y, m; Le, Lewis number; n, coordinate normal to
the material surface; P, entropy production, W/(m⋅K); Pr, Prandtl number; p, pressure, Pa; Q, thermal effect of reac-
tion, J/kg; R, specific gas constant, J/(kg⋅K); R0, universal gas constant, J/(mole⋅K); T, temperature, K; Ts

∗, charac-
teristic temperature of a fuel, K; t, time, sec; u, velocity along the coordinate x, m/sec; v, velocity along the coordinate
y, m/sec; uf, stationary flame propagation velocity, m/sec; vn, normal rate of combustion, m/sec; vs, linear rate of py-
rolysis, m/sec; W, chemical reaction rate, 1/sec; x, coordinate along the fuel surface, m; xb, coordinate of the burning-
out point of a fuel, m; X, generalized force; Y, mass concentration; y, coordinate normal to the surface of a fuel, m;
δ, variable thickness of a layer of a fuel, m; θ, angle between the coordinate y and direction of action of the buoyancy
force, rad; λ, thermal conductivity, W/(m⋅K); ν, stoichiometric coefficient; ρ, density, kg/m3. Subscripts: 0, initial; a,
ambient; b, burning-out point; fu, fuel; f, flame; n, normal; o, oxidant; s, solid fuel. Superscript: *, characteristic.
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